Skadar

Statistikat dhe probabiliteti
$$ \begin{flalign*} & \textbf{Pyetje Matematike për shokët e mi në klasën e 7} && \\ &(a) \quad \text{Llogarit: } \frac{ §§V1(3,15,3)§§ }{4} \cdot \left(\frac{5}{6} + \square + \frac{7}{8}\right) && \\ &(b) \quad \text{Zgjidh ekuacionin: } §§V2(2,10,2)§§ x^2 + 5x - §§V3(3,15,3)§§ = 0 && \\ &(c) \quad \text{Gjej vlerën e shprehjes: } 4 \cdot §§V4(1,10,1)§§^2 - 3 \cdot §§V5(2,12,2)§§ + 5 && \\ &(d) \quad \text{Përllogarit numrin e numrave të parë mes } §§V6(20,50,5)§§ \text{ dhe } §§V7(-60,100,10)§§. && \\ &(e) \quad \text{Përllogarit rezultatin e shprehjes: } \frac{ §§V8(4,16,2)§§^2 - 10 \cdot §§V9(-1,5,1)§§ }{2} && \\ &(f) \quad \text{Zgjidh ekuacionin: } §§V8(-10,5,1)§§ x - 5 = 3x + §§V10(1,7,1)§§ && \\ &(g) \quad \text{Caktuar drejtkëndëshin me gjatësi } §§V1(8,15,1)§§ \text{ dhe gjerësi } §§V5(-5,10,1)§§ , \text{ llogarit fushën e tij.} && \\ &(h) \quad \text{Përllogarit shumën e } §§V3(3,10,1)§§ \text{ numrave të parë.} && \\ &(i) \quad \text{Gjej përqindjen:} \\ & \qquad \text{A)} \quad \frac{ §§V4(4,16,2)§§ }{ §§V5(20,40,4)§§ } \qquad \text{B)} \quad \frac{ §§V6(25,60,5)§§ }{ §§V7(50,100,10)§§ } \\ &(j) \quad \text{Zgjidh ekuacionin: } §§V6(10,50,5)§§ x + 7 = 2x - §§V8(-10,5,1)§§ \\ &(k) \quad \text{Cakto vlerën e } x \text{ në ekuacionin: } 5x - 8 = 3x + 12 && \\ &(l) \quad \text{Përllogarit rezultatin e shprehjes: } \frac{5 \cdot §§V1(2,8,1)§§ - 3 \cdot §§V2(1,5,1)§§ }{2} && \\ &(m) \quad \text{Zgjidh ekuacionin: } 2x + §§V3(1,7,1)§§ = x - 4 && \\ &(n) \quad \text{Gjej perimetrin e katrorit me gjatësi të anës } §§V4(4,12,2)§§ . && \\ &(o) \quad \text{Llogarit shumën e 5 numrave të parë natyrorë, filluar nga } §§V5(2,8,1)§§ . && \\ &(p) \quad \text{Përllogarit rezultatin e shprehjes: } 3 \cdot ( §§V6(1,5,1)§§ + 2) + 2 \cdot ( §§V7(2,8,1)§§ - 1) && \\ &(q) \quad \text{Zgjidh ekuacionin: } 3x - 7 = §§V8(2,12,2)§§ \cdot x + 5 && \\ &(r) \quad \text{Gjej sipërfaqen e drejtkëndëshit me gjatësi } §§V9(6,15,1)§§ \text{ dhe gjerësi } §§V4(3,8,1)§§ . && \\ &(s) \quad \text{Përllogarit shumën e të gjitha numrave natyrorë nga } §§V1(1,10,1)§§ \text{ deri tek } §§V2(10,50,5)§§ . && \\ &(t) \quad \text{Cakto vlerën e } x \text{ në ekuacionin: } 2x - §§V3(4,16,2)§§ = 3x + 10 \end{flalign*} $$
An error has occurred. This application may no longer respond until reloaded. Reload 🗙