Njiovo2
Numeri naturali
(a) Prvo ovako:
Here is the expression converted into MathJax:
\( \left( x^2y + \frac{1}{33}y^3 \right) _{0}^{4} = \left[ 4x^2 + \frac{1}{3}y^3 \right]_{0}^{4} \)
(b) Onda tablica
\( {2}^{1} \)
<table class=' table table-bordered table-striped '><tr>
<td>\( \left( x^2y + \frac{1}{ 33 }y^3 \right) _{0}^{4} = \left[ 4x^2 + \frac{1}{3}y^3 \right] _{0}^{4} \)</td>
<td> \( \left[ x^2y + \frac{1}{33}y^3 \right] _{0}^{4} = \left[ 4x^2 + \frac{1}{3}y^3 \right]_{0}^{4} \) </td></tr>
<tr><td>I ovako \( \left[ x^2y + \frac{1}{ 33 }y^3 \right]_{0}^{4} = \left[ 4x^2 + \frac{1}{3}y^3 \right]_{0}^{4}\)</td>
<td><p>(d) Izračunaj: \( \frac{\sqrt{§§V7(36,144,12)§§} \cdot \sqrt{§§V8(16,64,8)§§}}{\sqrt{§§V9(4,16,4)§§}} \)</p>
<p>(e) Ako je \( \sqrt{§§V10(81,225,9)§§} = a \), odredi vrijednost izraza \( \frac{a}{\sqrt{§§V11(9,25,5)§§}} \)</p>
<p>(f) Pomnoži i zapiši rezultat u obliku kvadratnog korijena: \( \sqrt{§§V12(36,144,12)§§} \cdot \sqrt{§§V13(49,121,7)§§} \)</p>
<p>(g) Podijeli i zapiši rezultat kao jedan kvadratni korijen: \( \text{ c) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)</p></td></tr></table>
<b> Kraj</b>
\( \text{ c) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)
\( \text{ d) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)
<hr>
<table class=' table table-bordered table-striped '><tr>
<td>\( \text{ e) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)</td>
</tr><tr><td>\( \text{ f) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)</td>
</tr><tr><td>\( \text{ g) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \)</td>
</tr></table>
<br />