Kocka
Brojevi do 100
\begin{align*}
& \textbf{Matematička Pitanja - Grupirane i Centrirane Jednadžbe} && \\
&(1) \quad \text{Složite izraz:} \\
& \quad \frac{ §§V1(3,10,1)§§ x^3 - §§V2(2,8,1)§§ x^2 + §§V3(1,5,1)§§ x }{x^2 - §§V4(1,4,1)§§ x + §§V5(2,6,1)§§ } \div \frac{ §§V6(2,8,1)§§ x^2 - §§V7(1,5,1)§§ x }{x^2 - §§V8(1,4,1)§§ x} && \\
&(2) \quad \text{Riješite jednadžbu za } x: \\
& \quad \sqrt{ §§V9(4,25,2)§§ x - §§V10(1,10,1)§§ } + §§V9(2,8,1)§§ = §§V9(5,15,1)§§ - \frac{ §§V13(2,10,1)§§ }{3}x && \\
&(3) \quad \text{Nađite vrijednost za } x \text{ koja zadovoljava jednadžbu:} \\
& \quad \frac{ §§V4(3,12,1)§§ }{ §§V5(2,8,1)§§ }x - \frac{ §§V6(5,15,1)§§ }{ §§V7(3,12,1)§§ } = \frac{ x - §§V8(2,8,1)§§ }{ §§V9(4,16,1)§§ } + \frac{ §§V2(1,4,1)§§ }{ §§V21(8,32,1)§§ } && \\
&(4) \quad \text{Izračunajte derivaciju sljedeće funkcije:} \\
& \quad f(x) = \frac{ e^{ §§V2(1,5,1)§§ x}}{x^2} + \ln( §§V3(2,8,1)§§ x) - \square{ §§V4(1,9,2)§§ x + 1} && \\
&(5) \quad \text{Izračunajte određeni integral:} \\
& \quad \int_{ §§V5(1,4,1)§§ }^{ §§V6(6,12,1)§§ } (x^3 + 2x^2) \,dx + \int_{ §§V7(0,3,1)§§ }^{ §§V28(1,5,1)§§ } (2x + 1) \,dx && \\
&(6) \quad \text{Riješite sustav jednadžbi:} \\
& \quad \begin{cases}
3x + 2y - z = §§V9(5,15,1)§§ \\
x - 3y + 4z = - §§V3(2,8,1)§§ \\
2x + y - 2z = §§V1(7,21,1)§§
\end{cases} \\
\end{align*}