Vietove formulice

Kvadratne funkcije
<p>Prepišite tablicu u bilježnicu. Riješite jednadžbe, dovršite tablicu. Promatrajte i usporedite unose u stupcima. Što primjećujete?</p> <table class=' table table-bordered table-striped'> <tr> <td>Jednadžba</td> <td>b</td> <td>c</td> <td>x<sub>1</sub></td> <td>x<sub>2</sub></td> <td>x<sub>1</sub> + x<sub>2</sub></td> <td>x<sub>1</sub> · x<sub>2</sub></td> </tr> <tr> <td>x<sup>2</sup> + §§V0(2,10,1)§§x + §§V1(3,17,2)§§ = 0</td> <td>+§§V0(2,10,1)§§ </td> <td>+§§V1(3,17,2)§§</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>x<sup>2</sup> + §§V2(2,15,2)§§x - §§V3(12,30,1)§§ = 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>x<sup>2</sup> - §§V4(2,10,1)§§x + §§V5(2,15,1)§§ = 0</td> <td></td> <td></td> <td></td> <td></td> <td> <img src="https://www.mathkiss.com/uploads/zec2.jpg" width="200"/> </td> <td></td> </tr> <tr> <td>x<sup>2</sup> - §§V6(2,10,1)§§x - §§V7(20,30,1)§§= 0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </table> <p>Vieta je svoje spoznaje formulirao u rečenici koja se naziva „Vietin poučak“: Za rješenja x<sub>1</sub> i x<sub>2</sub> kvadratne jednadžbe x<sup>2</sup> + bx + c = 0 vrijedi: x<sub>1</sub> + x<sub>2</sub> = -b i x<sub>1</sub> · x<sub>2</sub> = c.</p>
An error has occurred. This application may no longer respond until reloaded. Reload 🗙