Dugo

Drugi korijen
1) Ovo je primjer nelatexa : zaokružite broj §§V0(1.2,5.8,0.01)§§ na najbližu desetinku. \( 5x + \sqrt[n]3{x} + \frac{ 5X }{ - \ y }^{ 4 } = 6X \)<br> 2) Ovo nije \( \sqrt[n]3{x} + \frac{ 5X }{ - \ y }^{ 4 } = 11 \)<br> 3) <i> Ovo nije latex </i><br> \( \sum_{i=1}^{n} i = \frac{n(n+1)}{2} + \int_0^1 x^2 dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1}{3} \)<br> 4) Evaluate the definite integral<br> \( \frac{ 10 x^3 - 7 x^2 + 1 x}{x^2 - 3 x + 3 } \div \frac{ 2 x^2 - 3 x}{x^2 - 2 x} \) 5) Bezveze \( \frac{ 3 x^3 \cos(x)}{\sqrt{ 0 x + 1}} - \ln( 6 x^2 + 4 x) \)<br> 6) Brljava - izračunaj nepoznanicu:<br> \( \text{ a) } §§V0(-5,5,1)§§x^2 + §§V2(5,15,5)§§x + 9 = §§V3(-5,5,1)§§x^2 + §§V1(-10,10,1)§§x + §§V4(9,90,9)§§ \) .<br /> \( \text{ b) } 9x^2 - 12x + 4 = §§V2(-5,5,1)§§x^2 - §§V3(-10,10,1)§§x + 4 + \int (3x^2 + 2x - 5) \,dx. \) .<br /> \( \text{ c) } \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) + \left( \frac{a + b}{c + d} \right) \) <br />
An error has occurred. This application may no longer respond until reloaded. Reload 🗙