Razlomi
Razlomci i decimalni brojevi
<table class=' table'>
<tr>
<td>(a) Malo se zagriji:</td>
<td></td>
</tr>
<tr>
<td>\( \frac{§§V5(-29,-20,1)§§}{§§V6(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V7(-29,-20,1)§§}{§§V8(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V10(4,10,1)§§}{§§V11(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V12(4,10,1)§§}{§§V13(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V15(-4,5,1)§§}{§§V16(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V17(-4,5,1)§§}{§§V18(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V20(32,40,5)§§}{§§V21(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V22(32,40,5)§§}{§§V23(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V25(71,80,1)§§}{§§V26(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V27(71,80,1)§§}{§§V28(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V30(43,50,1)§§}{§§V31(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V32(43,50,1)§§}{§§V33(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V35(12,15,1)§§}{§§V36(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V37(12,15,1)§§}{§§V38(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
</table>
<br>
(b) Pa onda malo rebavo
<table class='table table-bordered table-striped'>
<tr>
<td>\( \frac{§§V0(39,50,1)§§}{§§V1(8,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V2(39,50,1)§§}{§§V3(8,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V5(-29,-20,1)§§}{§§V6(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V7(-29,-20,1)§§}{§§V8(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V10(4,10,1)§§}{§§V11(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V12(4,10,1)§§}{§§V13(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V15(-4,5,1)§§}{§§V16(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V17(-4,5,1)§§}{§§V18(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V20(32,40,5)§§}{§§V21(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V22(32,40,5)§§}{§§V23(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V25(71,80,1)§§}{§§V26(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V27(71,80,1)§§}{§§V28(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V30(43,50,1)§§}{§§V31(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V32(43,50,1)§§}{§§V33(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V35(12,15,1)§§}{§§V36(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V37(12,15,1)§§}{§§V38(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
</table>
<p>(c) Na ekskurziju je krenulo §§V5(40,60,2)§§ učenika. Od njih je §§V6(20,40,2)§§ učenika posjetilo muzej. Koliki je postotak učenika posjetio muzej?</p>
<p>(d) Radnik je imao početnu plaću od §§V7(3000,8000,500)§§ kn. Dobio je povišicu od §§V8(5,20,5)§§%. Kolika je njegova nova plaća?</p>
<p>(e) U kutiji se nalazi §§V9(200,500,50)§§ bombona. Od toga je §§V10(50,150,10)§§ bombona čokoladno. Koliki je postotak čokoladnih bombona?</p>
<p>Izračunaj postotke u sljedećim zadacima:</p>
<table>
<tr>
<td>(a) Koliko je §§V1(100,500,50)§§% od §§V2(1000,5000,500)§§?</td>
</tr>
<tr>
<td>(b) §§N1§§ je kupio/la proizvod po sniženoj cijeni od §§V3(50,300,50)§§ kn. Ako je popust bio §§V4(5,50,5)§§%, kolika je bila početna cijena?</td>
</tr>
<tr>
<td>(c) Cijena goriva je porasla sa §§V5(8,12,1)§§ kn na §§V6(10,15,1)§§ kn. Koliki je postotni porast?</td>
</tr>
<tr>
<td>(d) U školi je bilo §§V7(500,1000,100)§§ učenika, a sada ih je §§V8(400,900,100)§§. Koliki je postotni pad broja učenika?</td>
</tr>
<tr>
<td>(e) §§N2§§ je na ispitu riješio/la §§V9(30,90,10)§§% zadataka. Ako je ispit imao §§V10(20,50,5)§§ pitanja, koliko je točno riješio/la?</td>
</tr>
<tr>
<td>(f) Odjeća u trgovini je snižena za §§V11(10,50,5)§§%. Ako je početna cijena majice bila §§V12(100,500,50)§§ kn, kolika je sadašnja cijena?</td>
</tr>
<tr>
<td>(g) Ako je broj stanovnika grada narastao sa §§V13(10000,50000,5000)§§ na §§V14(15000,70000,5000)§§, koliki je postotni rast?</td>
</tr>
<tr>
<td>(h) §§N3§§ je imao/la ušteđeno §§V15(500,5000,500)§§ kn. Nakon godinu dana kamata je iznosila §§V16(5,50,5)§§%. Koliko sada ima novca?</td>
</tr>
<tr>
<td>(i) Proizvod je poskupio sa §§V17(20,100,10)§§ kn na §§V18(30,150,10)§§ kn. Koliki je postotni porast cijene?</td>
</tr>
<tr>
<td>(j) Ako je popust na određeni proizvod §§V19(10,60,10)§§%, a njegova početna cijena je bila §§V20(200,1000,100)§§ kn, kolika je snižena cijena?</td>
</tr>
</table>