Tutv
Divisibility of natural numbers
$$ \begin{flalign}
&(a) \quad \int \frac{\cos x}{\sin^3 x} dx &&\\
&(b) \quad \lim_{x\to 0} \frac{\ln(1 + x^2) - \sin x}{x^4} \\
&(c) \quad \frac{d}{dx}\left[\int_0^{\sqrt{x}} \frac{\cos t^2}{\sqrt{1 + t^2}} dt\right] \\
&(d) \quad \int_0^1 \frac{\ln(1 - x)\ln(1 + x)}{x} dx \\
&(e) \quad \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{(n + k)^2} \\
&(f) \quad \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = \cos x \\
&(g) \quad \int_0^{\pi/2} \frac{\cos^2 x}{1 + \sin^2 x} dx \\
&(h) \quad \lim_{x\to 0} \left(\frac{1 - \cos x}{\sin x}\right)^{\cot x} \\
&(i) \quad \frac{d}{dx}\left[\int_{x^2}^{e^x} \frac{\ln t}{t} dt\right] \\
&(j) \quad \int \frac{1}{(x+1)(x^2+1)} dx &&
\end{flalign} $$