Toma 4
Kvadriranje
$$ \begin{flalign}
&(a) \quad \text{Izračunaj: } \int_{0}^{1} \frac{x^3 - 1}{\ln x} \, \mathrm{d}x && \\
&(b) \quad \text{Riješi diferencijalnu jednadžbu: } y'' - 2y' + y = e^x && \\
&(c) \quad \text{Riješi sustav jednadžbi: } \begin{cases} x^2 + y^2 + z^2 = 9 \\ x + y + z = 3 \\ x - y + z = 1 \end{cases} && \\
&(d) \quad \text{Izračunaj: } \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^3}{n^4} && \\
&(e) \quad \text{Riješi integralnu jednadžbu: } y(x) = \int_{0}^{x} \frac{1}{1+t^2+y^2} \, \mathrm{d}t, \quad y(0) = 0 && \\
&(f) \quad \text{Izračunaj: } \int_{0}^{1} \sqrt{x} \sin \left( \frac{1}{x} \right) \, \mathrm{d}x && \\
&(g) \quad \text{Izračunaj: } \sum_{n=0}^{\infty} \frac{1}{n!} \left( \frac{x}{2} \right)^n && \\
&(h) \quad \text{Riješi jednadžbu: } \sin x + \cos x = 1 && \\
&(i) \quad \text{Izračunaj: } \int_{0}^{\pi/4} \frac{1 + \cos^2 x}{1 + \sin x} \, \mathrm{d}x && \\
&(j) \quad \text{Izračunaj: } \lim_{n \to \infty} \left( \frac{n^2 + 1}{n^2 + n} \right)^n && \\
&(k) \quad \text{Izračunaj: } \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)2^{2n+1}} && \\
&(l) \quad \text{Riješi matricnu jednadžbu: } \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} &&
\end{flalign} $$