Dobraka
Powers with base 10
$$ \begin{flalign}
&(a) \quad \lim_{x\to0} \frac{\sin(x)}{x} && \\
&(b) \quad \int_0^{\infty} e^{-x}\ln(x) dx \\
&(c) \quad \frac{d}{dx}(\ln(x))^x \\
&(d) \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \\
&(e) \quad \iint_{\textbf{R}^2} \frac{1}{1+x^2+y^2} dxdy \\
&(f) \quad \frac{dy}{dx} = xy^2 - \cos(x) \\
&(g) \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \\
&(h) \quad \lim_{n\to\infty} \sqrt[n]{n!} \\
&(i) \quad \int \frac{1}{\sqrt{x^2+1}} dx \\
&(j) \quad e^{ix} = \cos(x) + i\sin(x) &&
\end{flalign}
$$