Linear konzept
Lineare Funktion
<table class="table table-bordered table-striped" style="background-color: white;">
<thead class="thead-dark">
<tr>
<th>Mathematical Area</th>
<th>Formula</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus</td>
<td>\( \int_a^b f(x) \, dx \)</td>
<td>Definite integral</td>
<td>\( \int_0^1 x^2 \, dx = \frac{1}{3} \)</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>\( A \mathbf{x} = \mathbf{b} \)</td>
<td>Matrix equation</td>
<td>\( \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} \)</td>
</tr>
<tr>
<td>Statistics</td>
<td>\( \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \)</td>
<td>Mean (average)</td>
<td>\( \bar{x} = \frac{1}{5} \sum_{i=1}^5 x_i \)</td>
</tr>
<tr>
<td>Geometry</td>
<td>\( A = \pi r^2 \)</td>
<td>Area of a circle</td>
<td>\( A = \pi \cdot 5^2 = 25\pi \)</td>
</tr>
</tbody>
</table>
<b> <p>Lineare Funktionen - 7. Klasse</p></b>
<p> a) Bestimmen Sie die Steigung (Anstieg) der linearen Funktion f(x) = §§V0(1,8,1)§§x + §§V2(1,6,1)§§ </p>
a) Solve \( ( §§V0(3,15,1)§§ x §§V0(5,15,1)§§)^2 \)
<p>
§§V0(3,15,1)§§ \( (§§V0(5,15,1)§§)^2 \) §§N1§§ ima neke jabuke i neke kruške. Ukupno ima §§V0(30,50,0.1)§§ voćki. Broj jabuka je za §§V1(1,20,1)§§ manji od broja krušaka. Koliko jabuka i krušaka ima?
</p>
b) Solve \( (§§V1(1,10,1)§§ \cdot §§V1(2,20,1)§§)^2 \) :
\[
((§§V1(1,10,1)§§ \cdot §§V1(2,20,1)§§)^2)
\]
c) Solve \( §§V2(1,10,1)§§ + §§V2(5,15,1)§§ \cdot §§V2(2,8,1)§§ \) :
\[
(§§V2(1,10,1)§§ + §§V2(5,15,1)§§ \cdot §§V2(2,8,1)§§)
\]
d) Solve \( (§§V3(3,10,1)§§ \cdot §§V3(2,6,1)§§)^2 \) :
\[
((§§V3(3,10,1)§§ \cdot §§V3(2,6,1)§§)^2)
\]
e) Solve \( §§V4(1,10,1)§§ + §§V4(2,10,1)§§ \cdot §§V4(3,8,1)§§ \) :
\[
(§§V4(1,10,1)§§ + §§V4(2,10,1)§§ \cdot §§V4(3,8,1)§§)
\]
f) Solve \( §§V5(1,10,1)§§ \cdot §§V5(2,10,1)§§ - §§V5(2,8,1)§§ \) :
\[
(§§V5(1,10,1)§§ \cdot §§V5(2,10,1)§§ - §§V5(2,8,1)§§)
\]
g) Solve \( (§§V6(1,10,1)§§ \cdot §§V6(3,9,1)§§)^2 \) :
\[
((§§V6(1,10,1)§§ \cdot §§V6(3,9,1)§§)^2)
\]
h) Solve \( §§V7(2,20,1)§§ + §§V7(3,15,1)§§ \cdot §§V7(2,8,1)§§ \) :
\[
(§§V7(2,20,1)§§ + §§V7(3,15,1)§§ \cdot §§V7(2,8,1)§§)
\]
i) Solve \( (§§V8(2,10,1)§§ \cdot §§V8(1,5,1)§§)^2 \) :
\[
((§§V8(2,10,1)§§ \cdot §§V8(1,5,1)§§)^2)
\]
j) Solve \( §§V9(1,10,1)§§ + §§V9(5,15,1)§§ - §§V9(2,8,1)§§ \) :
\[
(§§V9(1,10,1)§§ + §§V9(5,15,1)§§ - §§V9(2,8,1)§§)
\]