Andy mandy
Kvadriranje
$$\int_1^2 (x + 4)^2 dx $$
1) Tašo Tahana
$$\eqalign{
\int_1^2 (x + 4)^2 dx = \int_1^2 (x^2 + §§V1(1,10,1)§§ §§V0(1,8,1)§§ x + 16) dx \\
&= \left\lbrack {x^3 \over 3} + {8x^2 \over 2} + 16x \right\rbrack_1^2 \\
&= \left\lbrack {8 \over 3} + {8 * 4 \over 2} + 16 * 2 \right\rbrack
- \left\lbrack {1 \over 3} + {8 \over 2} + 16 \right\rbrack
}$$
2) Oda ču im ja njima 5 - 6 večeriju !
$$\eqalign{
f(x) = {3x^4} \implies {dy \over dx} = 12x^3
}$$
$$\eqalign{
f(x) = {2x^{-3/2}} \implies {dy \over dx} = -3x^{-5/2} &= -{3 \over \sqrt{x^5}}
}$$
3) Ode srati
$$\eqalign{
x = 2t + 1 \implies {dx \over dt} = 2 \\
y = t^2 \implies {dy \over dt} = 2t \\
{dy \over dx} = {dy \over dt} \div {dx \over dt} \\
\implies 2t \div 2 = t
}$$