Potencije ali sutre
Potencije s bazom 10
<h3>Dobrodošli na Primjer Web Stranice</h3>
<p>Ovo je primjer teksta koji kombinira običan tekst s LaTeX notacijom za matematičke formule. </p> \( \quad f(x)=\displaystyle\log{\frac{x^2-3x+2}{x+1}} { x }^{ §§V0(2,4,1)§§ } - \sqrt{2 +( x + §§V2(1,6,1)§§ ) §§V4(-11,-3,1)§§ } + \frac{ x + §§V6(1,10,1)§§ }{ §§V9(1,10,1)§§ + §§V8(1,10,1)§§ x } \) = 0
</p>
ONDA AJMO OVAKO
<hr>
<h2>Rješi ovo: </H2>
<p>Berava</p>
\( (a) \quad \lim_{x\to0} \frac{\sin(x)}{x} \)
<p>Napoj </p>
\( (b) \quad \int_0^{\infty} e^{-x}\ln(x) \, dx \)
<p>Lučevine</p>
\( (c) \quad \frac{d}{dx}(\ln(x))^x \)
<p>Podgrline</p>
\( (d) \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \)</p>
<p>Svinjara</p>
\( (e) \quad \iint_{\mathbb{R}^2} \frac{1}{1+x^2+y^2} \, dx \, dy \)
<p>Obarine</p>
\( (f) \quad \frac{dy}{dx} = xy^2 - \cos(x) \)
<p>Mekinje</p>
\( (g) \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \)
<p>Jetrva</p>
\( (h) \quad \lim_{n\to\infty} \sqrt[n]{n!} \)
<p>Francla</p>
\( (i) \quad \int \frac{1}{\sqrt{x^2+1}} \, dx \)
<p>Zaostrog</p>
\( (j) \quad e^{ix} = \cos(x) + i\sin(x) \)
</p>