Geburstag Geschank
Brüche
\begin{flalign*}
& \textbf{Berechnen Sie, indem Sie den Bruch in eine ganze Zahl und einen Rest umwandeln} && \\
& \quad \text{Beispiel } \frac{19}{7} = 2 + \frac{5}{7} && \\
&(a) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(b) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(c) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \ && \\
&(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(e) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
&(g) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
&(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
(l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
& \textbf{} && \\
& \textbf{Part 2} && \\
& \quad \text{ - negative zahlen} && \\
&(a) \quad \frac{ §§V1(-6,-49,-1)§§ }{ §§V6(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(b) \quad \frac{ §§V6(-50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(c) \quad \frac{ §§V2(-60,6,1)§§ }{ §§V7(-5,-9,-1)§§ } = \quad \large\square +
\frac{\large\square}{\large\square} \normalsize && \\
&(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(e) \quad \frac{ §§V5(-30,-50,-1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
\\&(g) \quad \frac{ §§V1(-10,-50,-1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
&(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\
& \textbf{} && \\
& \textbf{Part 3} && \\
& \quad \text{ - Ein Geschenk meines Vaters :-) } && \\
&(a) \quad \frac{ §§V1(-6,-49,-1)§§ }{ §§V6(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(b) \quad \frac{ §§V6(-50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(c) \quad \frac{ §§V2(-60,6,1)§§ }{ §§V7(-5,-9,-1)§§ } = \quad \large\square +
\frac{\large\square}{\large\square} \normalsize && \\
&(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(e) \quad \frac{ §§V5(-30,-50,-1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
\\&(g) \quad \frac{ §§V1(-10,-50,-1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
&(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\
\end{flalign*}