Klass
Quadrieren
You provided two mathematical expressions. Let me help you expand them:
**b) \( (2r - 0.25s)^2 \):**
This is a binomial squared, so we can use the formula \( (a - b)^2 = a^2 - 2ab + b^2 \) to expand it:
\[
(2r - 0.25s)^2 = (2r)^2 - 2(2r)(0.25s) + (0.25s)^2
\]
Expanding:
\[
(2r)^2 = 4r^2
\]
\[
-2(2r)(0.25s) = -1rs
\]
\[
(0.25s)^2 = 0.0625s^2
\]
So the expanded form is:
\[
4r^2 - rs + 0.0625s^2
\]
---
**e) \( \left(3p - \frac{1}{3}q\right)\left(\frac{1}{3}q + 3p\right) \):**
This is the product of two binomials, so we will expand it by using the distributive property:
\[
= (3p)(\frac{1}{3}q) + (3p)(3p) - \left(\frac{1}{3}q\right)\left(\frac{1}{3}q\right) - \left(\frac{1}{3}q\right)(3p)
\]
Now expand each term:
\[
(3p)(\frac{1}{3}q) = pq
\]
\[
(3p)(3p) = 9p^2
\]
\[
-\left(\frac{1}{3}q\right)\left(\frac{1}{3}q\right) = -\frac{1}{9}q^2
\]
\[
-\left(\frac{1}{3}q\right)(3p) = -pq
\]
Now combine like terms:
\[
pq - pq + 9p^2 - \frac{1}{9}q^2
\]
The \( pq \) terms cancel out, leaving:
\[
9p^2 - \frac{1}{9}q^2
\]
---
So the expanded forms of the expressions are:
**b) \( 4r^2 - rs + 0.0625s^2 \)**
**e) \( 9p^2 - \frac{1}{9}q^2 \)**