Table 3
Numrat deri në 100
<svg width="200" height="200" viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg">
<!-- Definiranje varijable za kut trokuta -->
<defs>
<!-- Kut u stupnjevima koji želimo koristiti -->
<variable name="x" value="45"/>
<!-- Kut u radijanima -->
<variable name="r" value="$x * 3.14159 / 180"/>
<!-- Izračun koordinata točaka trokuta -->
<variable name="x1" value="100"/> <!-- središte x -->
<variable name="y1" value="100"/> <!-- središte y -->
<variable name="x2" value="$x1"/> <!-- x1 je isti kao i x2 (visina trokuta) -->
<variable name="y2" value="0"/> <!-- točka na vrhu trokuta -->
<variable name="x3" value="$x1 + 100 * cos($r)"/> <!-- koristimo kosinus za izračun x-koordinate treće točke -->
<variable name="y3" value="$y1 + 100 * sin($r)"/> <!-- koristimo sinus za izračun y-koordinate treće točke -->
</defs>
<!-- Definiranje trokuta koristeći izračunate koordinate točaka -->
<polygon points="$x1,$y1 $x2,$y2 $x3,$y3" fill="lightblue" stroke="black" stroke-width="2"/>
</svg>
(a) Obije: §§V6(45,360,45)§§
<table class=' table table-bordered table-striped '><tr><td>Row 1, Cell 1</td><td><img src="/pic/mk.png" width="100"/></td></tr><tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr></table>
(b) Border
<table class=' table table-bordered '><tr><td>
<p>\( \frac{39}{8} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-29}{7} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{4}{2} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-4}{3} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{32}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{71}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{43}{6} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{12}{6} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{51}{6} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{42}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-49}{6} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-9}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{21}{9} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-44}{9} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{5}{3} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-3}{3} = \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{36}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{97}{8} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{48}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{34}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{27}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{25}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{41}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
<p>\( \frac{-3}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \)</p>
</td><td><img src="/pic/mk4.png" width="100"/></td></tr><tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr></table>
(d) Stripped
<table class='table table-striped '><tr><td>Bestimme das unbestimmte Integral von \(g(x) = §§V2(-4,4,1)§§2x^2 + 3x + 1\) </td><td>\( \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) </td><td>Row 1, Cell 1</td><td>Row 1, Cell 2</td></tr><tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr></table>
(e) None
<table class=''><tr><td>Row 1, Cell 1</td><td>Row 1, Cell 2</td></tr><tr><td>Row 2, Cell 1</td><td>Row 2, Cell 2</td></tr></table>
<b> Je</b>