Za trlj ...
Quadrieren
$$ \begin{flalign*}
&(a) \quad \text{Berechne: } \int_{0}^{1} \frac{x^ §§V2(3,15,3)§§ - 1}{\ln x} \, \mathrm{d}x && \\
&(b) \quad \text{Löse die Gleichung: } \sqrt{ §§V2(3,15,3)§§ x-1}+\sqrt[ §§V2(3,15,3)§§ ]{ §§V2(2,10,2)§§ x-5}= §§V2(3,15,3)§§ && \\
&(c) \quad \text{Berechne: } \frac{ §§V2(2,10,2)§§ }{5} \times \left(\frac{ §§V2(3,15,3)§§ }{4} + \frac{5}{6}\right) && \\
&(d) \quad \text{Löse die Ungleichung: } §§V2(2,10,2)§§ x + 5 \geq §§V2(3,15,3)§§ x - §§V2(2,10,2)§§ && \\
&(e) \quad \text{Berechne: } \left(\frac{ §§V2(3,15,3)§§ }{4}\right)^ §§V2(2,10,2)§§ \cdot \left(\frac{ §§V2(2,10,2)§§ }{ §§V2(3,15,3)§§ }\right)^ §§V2(3,15,3)§§ && \\
&(f) \quad \text{Löse die Gleichung: } \frac{ §§V2(2,10,2)§§ x}{ §§V2(3,15,3)§§ } - \frac{5}{ §§V2(2,10,2)§§ } = \frac{x+4}{6} && \\
&(g) \quad \text{Berechne: } \sqrt{16} \cdot \left(\frac{ §§V2(2,10,2)§§ }{ §§V2(3,15,3)§§ }\right)^{- §§V2(2,10,2)§§ } && \\
&(h) \quad \text{Löse das Gleichungssystem:} \\
&\quad\quad \begin{cases} §§V2(2,10,2)§§ x - §§V2(3,15,3)§§ y = 5 \\ 4x + y = §§V2(2,10,2)§§ \end{cases} && \\
&(i) \quad \text{Berechne: } \frac{5}{8} - \left(\frac{1}{ §§V2(3,15,3)§§ } - \frac{ §§V2(2,10,2)§§ }{5}\right) && \\
&(j) \quad \text{Löse die Gleichung: } §§V2(2,10,2)§§ ( §§V2(3,15,3)§§ x - 1) = 4x + 5 &&\\
&(a12) \quad \text{Berechne: } \frac{ §§V2(3,15,3)§§ }{4} \cdot \left(\frac{5}{6} + \frac{7}{8}\right) && \\
&(b12) \quad \text{Löse die Gleichung: } \frac{ §§V2(2,10,2)§§ x- §§V2(3,15,3)§§ }{4} - \frac{ §§V2(3,15,3)§§ x+2}{ §§V2(2,10,2)§§ } = \frac{x+1}{ §§V2(3,15,3)§§ } && \\
&(c12) \quad \text{Berechne: } \sqrt[ §§V2(3,15,3)§§ ]{\frac{ §§V2(2,10,2)§§ 7}{64}} && \\
&(d12) \quad \text{Löse das Gleichungssystem:} \\
&\quad\quad \begin{cases} §§V2(2,10,2)§§ x + §§V2(3,15,3)§§ y = §§V1(1,10,1)§§ 0 \\ 4x - y = 5 \end{cases} && \\
&(e §§V1(1,10,1)§§ §§V2(2,10,2)§§ ) \quad \text{Berechne: } \left(\frac{5}{6}\right)^{- §§V2(2,10,2)§§ } \cdot \left(\frac{7}{10}\right)^{- §§V1(1,10,1)§§ } && \\
&(f12) \quad \text{Löse die Ungleichung: } \frac{ §§V2(2,10,2)§§ x- §§V1(1,10,1)§§ }{ §§V2(3,15,3)§§ } > \frac{x+ §§V2(2,10,2)§§ }{4} && \\
&(g12) \quad \text{Berechne: } \log_{ §§V2(2,10,2)§§ } 8 + \log_{\frac{ §§V1(1,10,1)§§ }{ §§V2(2,10,2)§§ }} 16 && \\
&(h12) \quad \text{Löse die Gleichung: } \sqrt{ §§V2(2,10,2)§§ x+ §§V1(1,10,1)§§ } = \sqrt{ §§V2(3,15,3)§§ x- §§V2(2,10,2)§§ } && \\
&(i12) \quad \text{Berechne: } \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{ §§V2(3,15,3)§§ }\right) && \\
&(j12) \quad \text{Löse das Gleichungssystem:} \\
&a1) \quad \text{Berechne: } \frac{ §§V2(3,15,3)§§ }{4} \cdot \left(\frac{5}{6} + \frac{7}{8}\right) && \\
&a2) \quad \text{Löse die Gleichung: } \frac{ §§V2(2,10,2)§§ x- §§V2(3,15,3)§§ }{4} - \frac{ §§V2(3,15,3)§§ x+ §§V2(2,10,2)§§ }{ §§V2(2,10,2)§§ } = \frac{x+ §§V1(1,10,1)§§ }{ §§V2(3,15,3)§§ } && \\
&a3) \quad \text{Berechne: } \sqrt[3]{\frac{ §§V2(2,10,2)§§ 7}{64}} && \\
&a4) \quad \text{Löse das Gleichungssystem:} \\
&\quad\quad \begin{cases} §§V2(2,10,2)§§ x + §§V2(3,15,3)§§ y = §§V1(1,10,1)§§ 0 \\ 4x - y = 5 \end{cases} && \\
&a5) \quad \text{Berechne: } \left(\frac{5}{6}\right)^{-2} \cdot \left(\frac{7}{10}\right)^{-1} && \\
&a6) \quad \text{Löse die Ungleichung: } \frac{ §§V2(2,10,2)§§ x- §§V1(1,10,1)§§ }{ §§V2(3,15,3)§§ } > \frac{x+ §§V2(2,10,2)§§ }{4} && \\
&a7) \quad \text{Berechne: } \log_{2} 8 + \log_{\frac{ §§V1(1,10,1)§§ }{ §§V2(2,10,2)§§ }} 16 && \\
&a8) \quad \text{Löse die Gleichung: } \sqrt{ §§V2(2,10,2)§§ x+ §§V1(1,10,1)§§ } = \sqrt{ §§V2(3,15,3)§§ x- §§V2(2,10,2)§§ } && \\
&a9) \quad \text{Berechne: } \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{ §§V2(3,15,3)§§ }\right) && \\
&a10) \quad \text{Löse das Gleichungssystem:} \\
&\quad\quad \begin{cases} §§V2(2,10,2)§§ x - y + z = 4 \\ x + §§V2(3,15,3)§§ y - §§V2(2,10,2)§§ z = - §§V1(1,10,1)§§ \\ §§V2(3,15,3)§§ x + y + 4z = 9 \end{cases} && \\
&(b1) \quad \text{Berechne: } \frac{5}{8} \cdot \left(\frac{ §§V2(3,15,3)§§ }{4} + \frac{ §§V2(2,10,2)§§ }{5}\right) && \\
&(b2) \quad \text{Löse die Gleichung: } §§V2(2,10,2)§§ x^2 + 5x - §§V2(3,15,3)§§ = 0 && \\
&(b3) \quad \text{Berechne: } \sqrt{144} && \\
&(b4) \quad \text{Löse das Gleichungssystem:} \\
&\quad\quad \begin{cases} §§V2(3,15,3)§§ x - §§V2(2,10,2)§§ y = 7 \\ 5x + 4y = 11 \end{cases} && \\
&(b5) \quad \text{Berechne: } \left(\frac{ §§V2(3,15,3)§§ }{5}\right)^{-2} \cdot \left(\frac{4}{7}\right)^{- §§V1(1,10,1)§§ } && \\
&(b6) \quad \text{Löse die Ungleichung: } \frac{ §§V2(2,10,2)§§ x+ §§V1(1,10,1)§§ }{ §§V2(3,15,3)§§ } \geq \frac{x- §§V2(2,10,2)§§ }{ §§V2(2,10,2)§§ } && \\
&(b7) \quad \text{Berechne: } \log_{2} §§V2(3,15,3)§§ 2 + \log_{\frac{ §§V1(1,10,1)§§ }{2}} 4 && \\
&(b8) \quad \text{Löse die Gleichung: } \sqrt{4x+ §§V1(1,10,1)§§ } = \sqrt{5x- §§V2(2,10,2)§§ } && \\
&(b9) \quad \text{Berechne: } \sin\left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{ §§V2(3,15,3)§§ }\right) && \\
\end{flalign*}
\textbf{Ferrarijeva rezolventa}
Given the quartic equation:
\[
ax^4 + bx^3 + cx^2 + dx + e = 0
\]
where $a \neq 0$, the Ferrari's method aims to find the solutions $x$ in terms of the coefficients $a$, $b$, $c$, $d$, and $e$.
To solve the quartic equation, follow these steps:
\begin{enumerate}
\item Calculate the discriminant $D$:
\[
D = b^2 - 4ac
\]
\item Find the coefficients $p$ and $q$:
\[
p = \frac{8ac - 3b^2}{8a^2}, \quad q = \frac{b^3 - 4abc + 8a^2d}{8a^3}
\]
\item Calculate the intermediate value $m$:
\[
m = \sqrt[3]{\frac{-q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}
\]
\item Find the three roots $x_1$, $x_2$, and $x_3$ using the following expressions:
\begin{align*}
x_1 &= \frac{-b}{4a} + \frac{1}{2\sqrt{a}}\sqrt{-2p + \frac{2}{m} + \frac{3bm}{a}} \\
x_2 &= \frac{-b}{4a} - \frac{1}{2\sqrt{a}}\sqrt{-2p + \frac{2}{m} - \frac{3bm}{a}} \\
x_3 &= \frac{-b}{4a} + \frac{1}{2\sqrt{a}}\sqrt{-2p - \frac{2}{m} + \frac{3bm}{a}}
\end{align*}
\item If $D \neq 0$, find the fourth root $x_4$ using:
\[
x_4 = \frac{-b}{4a} - \frac{1}{2\sqrt{a}}\sqrt{-2p - \frac{2}{m} - \frac{3bm}{a}}
\]
\end{enumerate}