Wangen

Multiplikation und Division bis 1000
<p>(a) §§( ((( §§V0(1,50,1)§§ + §§V1(1,10,1)§§ ) / §§V2(1,10,1)§§ ) * §§V3(1,10,1)§§ ) - 5 )§§ = ((( §§V0(1,50,1)§§ + §§V1(1,10,1)§§ ) / §§V2(1,10,1)§§ ) * §§V3(1,10,1)§§ ) - 5 )</p> <p>(a1) §§( ((( §§V10(1,50,1)§§ + §§V11(1,10,.11)§§ ) / §§V12(1,10,1)§§ ) * §§V13(1,10,1)§§ ) - 5 )§§ = ((( §§V10(1,50,1)§§ + §§V11(1,10,.11)§§ ) / §§V12(1,10,1)§§ ) * §§V13(1,10,1)§§ ) - 5 )</p> <p>(b) Lösen Sie die Gleichung für x: \( \sqrt{ §§V9(4,25,2)§§ x - §§V1(1,10,1)§§ } + §§V2(2,8,1)§§ = §§V3(5,15,1)§§ - \frac{ §§V4(2,10,1)§§ }{3}x \)</p> <p>(c) Berechnen Sie den Ausdruck: \( \left( \frac{ §§V1(2,10,1)§§ + §§V2(1,5,1)§§ }{ §§V3(1,8,1)§§ } \right) * \left( §§V4(2,6,1)§§ - \frac{ §§V5(1,4,1)§§ }{ §§V6(1,5,1)§§ } \right) \)</p> <p>(d) Bestimmen Sie den Wert von x: \( \frac{ ((( §§V7(1,9,1)§§ x - §§V8(2,7,1)§§ ) * §§V9(3,12,1)§§ ) + §§V1(1,6,1)§§ ) }{ §§V2(2,10,1)§§ } = x + §§V3(3,9,1)§§ \)</p> <p>(e) Berechnen Sie das bestimmte Integral: \( \int_{ §§V4(1,4,1)§§ }^{ §§V5(6,12,1)§§ } \left( x^3 + 2\left( x - §§V6(1,3,1)§§ \right)^2 \right) \,dx \)</p> <p>(f) Lösen Sie das Gleichungssystem: \( 3x + 2y - z = §§V7(5,15,1)§§ \) \( x - 3y + 4z = - §§V8(2,8,1)§§ \) \( 2x + y - 2z = §§V9(7,21,1)§§ \)</p> <p>(g) Finden Sie die Lösung der Differentialgleichung: \( \frac{ dy }{dx} + 2(y - §§V1(1,4,1)§§ ) = (4x + 3e^{ §§V2(1,4,1)§§ x}) \)</p> <p>(h) Bestimmen Sie den Wert von x, der die Gleichung erfüllt: \( \tan( §§V3(1,5,1)§§ (x - §§V4(1,3,1)§§ )) + \frac{1}{ §§V5(2,8,1)§§ }\sin( §§V6(1,4,1)§§ x) = 1 \)</p> <p>(i) Berechnen Sie das unbestimmte Integral der Funktion: \( \int \left( §§V7(4,16,1)§§ x^3 + 2\sqrt{x + §§V8(1,5,1)§§ } + \frac{1}{(x^2 + §§V9(1,3,1)§§ )} \right) \,dx \)</p> <p>(j) Berechnen Sie die zweite Ableitung: \( g(x) = \frac{ §§V1(2,8,1)§§ x^3 \cos(x - §§V2(1,4,1)§§ )}{\sqrt{ §§V3(1,9,2)§§ (x + 1)}} - \ln( §§V4(3,12,1)§§ x^2 + §§V5(1,5,1)§§ x) \)</p> <p>(k) Vereinfachen Sie den Ausdruck: \( \left( \frac{ ((( §§V6(2,10,1)§§ x^2 - §§V7(1,6,1)§§ ) + §§V8(3,9,1)§§ ) * §§V9(1,4,1)§§ )}{ §§V1(2,8,1)§§ x + §§V2(3,7,1)§§ } \right) - x^2 \) §§F(ivo, 3, 5 )§§ + §§N1§§ - §§N0§§ <p> §§F( jarebica )§§ + Perica & §§N0§§ </p> ( §§V0(1,50,1)§§ / §§V2(-0.01,2,0.2)§§ - 3 ) + §§V4(80,280,25)§§ = = §§( ( §§V0(1,50,1)§§ / §§V2(-0.01,2,0.2)§§ - 3 ) + §§V4(80,280,25)§§ )§§ </p> <br>Ovo je neki tablica <h5 class="text-center">Mathematical Approximation Table</h5> <table class="table table-bordered table-striped text-center" border="1" style="border-collapse: collapse;"> <thead class="table-dark"> <tr> <td>S.no.</td> <td>Numbers</td> <td>Calculation</td> <td>Approx Answer</td> <td>Exact Answer</td> </tr> </thead> <tbody> <tr> <td>1</td> <td>\( \sqrt{23} \)</td> <td>\( \frac{23 + 25}{2 \times \sqrt{25}} = \frac{48}{10} = 4.8 \)</td> <td>4.8</td> <td>4.795</td> </tr> <tr> <td>2</td> <td>\( \sqrt{50} \)</td> <td>\( \frac{50 + 49}{2 \sqrt{49}} = \frac{99}{14} \)</td> <td>7.071</td> <td>7.071</td> </tr> <tr> <td>3</td> <td>\( \sqrt{68} \)</td> <td>\( \frac{68 + 64}{2 \sqrt{64}} = \frac{132}{16} \)</td> <td>8.25</td> <td>8.246</td> </tr> <tr> <td>4</td> <td>\( \sqrt{112} \)</td> <td>\( \frac{112 + 121}{2 \sqrt{121}} = \frac{233}{22} \)</td> <td>10.59</td> <td>10.583</td> </tr> <tr> <td>5</td> <td>\( \sqrt{2509} \)</td> <td>\( \frac{2509 + 2500}{2 \sqrt{2500}} = \frac{5009}{100} \)</td> <td>50.09</td> <td>50.0899</td> </tr> <tr> <td>6</td> <td>\( \sqrt{78} \)</td> <td>\( \frac{78 + 81}{2 \sqrt{81}} = \frac{159}{18} \)</td> <td>8.833</td> <td>8.8317</td> </tr> <tr> <td>7</td> <td>\( \sqrt{96} \)</td> <td>\( \frac{96 + 100}{2 \sqrt{100}} = \frac{196}{20} \)</td> <td>9.8</td> <td>9.7979</td> </tr> </tbody> </table> <br />
An unhandled error has occurred. Reload 🗙