U razlomak te ljubim 2
Razlomci
<table class=' table'>
<tr>
<td>(a) Malo se zagriji:</td>
<td></td>
</tr>
<tr>
<td>\( \frac{§§V5(-29,-20,1)§§}{§§V6(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V7(-29,-20,1)§§}{§§V8(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V10(4,10,1)§§}{§§V11(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V12(4,10,1)§§}{§§V13(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V15(-4,5,1)§§}{§§V16(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V17(-4,5,1)§§}{§§V18(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V20(32,40,5)§§}{§§V21(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V22(32,40,5)§§}{§§V23(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V25(71,80,1)§§}{§§V26(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V27(71,80,1)§§}{§§V28(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V30(43,50,1)§§}{§§V31(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V32(43,50,1)§§}{§§V33(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V35(12,15,1)§§}{§§V36(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V37(12,15,1)§§}{§§V38(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
</table>
<br>
<img src="/pic/mk.png" width="100"/>
<table class='table'>
<tr>
<td> \(a^n \cdot a^m = a^{n+m}\) </td>
<td>Produkt von Potenzen: Wenn die Basen gleich sind, werden die Exponenten addiert.</td>
</tr>
<tr>
<td> \(\frac{a^n}{a^m} = a^{n-m}\) </td>
<td>Quotient von Potenzen: Wenn die Basen gleich sind, werden die Exponenten subtrahiert.</td>
</tr>
<tr>
<td> \((a^n)^m = a^{n \cdot m}\) </td>
<td>Potenz einer Potenz: Ein Exponent wird mit einem anderen multipliziert, wenn er hochgenommen wird.</td>
</tr>
<tr>
<td> \(a^n \cdot b^n = (a \cdot b)^n\) </td>
<td>Produkt von ähnlichen Potenzen: Wenn die Basen multipliziert werden, wird ein gemeinsamer Exponent herausgezogen.</td>
</tr>
<tr>
<td> \(\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n\) </td>
<td>Quotient von ähnlichen Potenzen: Wenn die Basen dividiert werden, wird ein gemeinsamer Exponent herausgezogen.</td>
</tr>
</table>
(b) Pa onda malo rebavo
<table class='table table-bordered table-striped'>
<tr>
<td>\( \frac{§§V0(39,50,1)§§}{§§V1(8,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V2(39,50,1)§§}{§§V3(8,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V5(-29,-20,1)§§}{§§V6(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V7(-29,-20,1)§§}{§§V8(7,15,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V10(4,10,1)§§}{§§V11(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V12(4,10,1)§§}{§§V13(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V15(-4,5,1)§§}{§§V16(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V17(-4,5,1)§§}{§§V18(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V20(32,40,5)§§}{§§V21(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V22(32,40,5)§§}{§§V23(2,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V25(71,80,1)§§}{§§V26(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V27(71,80,1)§§}{§§V28(3,5,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V30(43,50,1)§§}{§§V31(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V32(43,50,1)§§}{§§V33(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
<tr>
<td>\( \frac{§§V35(12,15,1)§§}{§§V36(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
<td>\( \frac{§§V37(12,15,1)§§}{§§V38(6,10,1)§§} = \large\square \large\square + \frac{\large\square}{\large\square} \)</td>
</tr>
</table>