Rastavljanje polinoma na faktore 2
Proporcionalnost i obrnuta proporcionalnost
<h2>16. Razdvajanje na faktore</h2>
<p>a) \(a^{x+1}+a^{x+3}=\_\)</p>
<p>b) \(m^{z+5}+m^{z+4}=\_\)</p>
<p>c) 16a^2n+1 + 4a^n = \_\)</p>
<p>d) 144a^2+5a + 360a^2 + 2 = \_\)</p>
<h2>17. Rješavanje jednadžbi</h2>
<p>a) \(x^{2}-2x=0\)</p>
<p>b) \(y^{2}-y=0\)</p>
<p>c) \(a^{2}+3a=0\)</p>
<p>d) \(z^{2}-3z=0\)</p>
<h2>18. Rješavanje jednadžbi</h2>
<p>a) \(4x^{2}-12x=0\)</p>
<p>b) \(6a^{2}+24a=0\)</p>
<p>c) \(12y^{2}-36y=0\)</p>
<p>d) \(7z^{2}-14z=0\)</p>
<h2>19. Razdvajanje brojilaca na faktore i skraćivanje razlomaka</h2>
<p>a) \[\frac{4a+4b}{2(a+b)},\] \[a+b\ne0\]</p>
<p>b) \[\frac{2x-4y}{x-2y},\] \[x-2y\ne0\]</p>
<p>c) \[\frac{3a-6b}{-a+2b},\] \[-a+2b\ne0\]</p>
<p>d) \[\frac{4x-12y}{x-3y},\] \[x-3y\ne0\]</p>
<h2>20. Razdvajanje brojilaca na faktore i skraćivanje razlomaka</h2>
<p>a) \[\frac{x^{3}+4x^{2}}{2(x+4)},\] \[x+4\ne0\]</p>
<p>b) \[\frac{a^{3}+5a^{2}b}{a+5b},\] \[a+5b\ne0\]</p>
<p>c) \[\frac{x^{2}y+2xy}{x+2},\] \[x+2\ne0\]</p>
<p>d) \[\frac{2x^{2}+xy}{2x+y},\] \[2x+y\ne0\]</p>