Štitar Atom
Napravio ovo gosn <b> §§N0§§ </b>
<h1 class="text-center mb-4">Advanced Nuclear Physics Problems</h1>
<div class="mb-4">
<h5>Solve the following problems:</h5>
<div class="mb-3">
<p>(a) Calculate the energy released during the fusion of two deuterium nuclei:
$$^2_1\text{H} + ^2_1\text{H} \rightarrow ^3_2\text{He} + n$$
Given the masses:
$$m(^2_1\text{H}) = §§V0(2.013,2.015,0.0001)§§ \, \text{u}, \, m(^3_2\text{He}) = §§V1(3.014,3.016,0.0001)§§ \, \text{u}, \, m(n) = §§V2(1.008,1.009,0.0001)§§ \, \text{u}$$
Use \(1 \, \text{u} = 931.5 \, \text{MeV/c}^2\).</p>
</div>
<div class="mb-3">
<p>(b) The half-life of a radioactive isotope is §§V3(5,50,5)§§ years. Calculate the time required for its activity to decrease to §§V4(10,50,10)§§% of the initial activity.
Use the decay law:
$$A(t) = A_0 e^{-\lambda t}, \, \lambda = \frac{\ln(2)}{T_{1/2}}.$$</p>
</div>
<div class="mb-3">
<p>(c) A uranium-235 nucleus absorbs a neutron and undergoes fission:
$$^{235}_{92}\text{U} + n \rightarrow ^{144}_{56}\text{Ba} + ^{89}_{36}\text{Kr} + 3n$$
Calculate the total energy released, given:
$$m(^{235}_{92}\text{U}) = §§V5(235.04,235.06,0.0001)§§ \, \text{u}, \, m(n) = §§V6(1.008,1.009,0.0001)§§ \, \text{u},$$
$$m(^{144}_{56}\text{Ba}) = §§V7(143.92,143.95,0.0001)§§ \, \text{u}, \, m(^{89}_{36}\text{Kr}) = §§V8(88.92,88.95,0.0001)§§ \, \text{u}.$$</p>
</div>
<div class="mb-3">
<p>(d) Calculate the critical mass for a spherical uranium-235 assembly. Assume the average neutron mean free path is \(l = §§V9(2,5,0.1)§§ \, \text{cm}\), and the density of uranium-235 is \(\rho = §§V10(18,19,0.1)§§ \, \text{g/cm}^3\). Use the formula:
$$M_c = \frac{4}{3} \pi R_c^3 \rho, \, R_c = 2l.$$</p>
</div>
<div class="mb-3">
<p>(e) A nuclear reactor produces §§V11(500,1500,100)§§ MW of thermal power. Calculate the mass of uranium-235 consumed per day if each fission releases \(E_f = 200 \, \text{MeV}\).
Use:
$$1 \, \text{MeV} = 1.602 \times 10^{-13} \, \text{J}, \, \text{Avogadro's number} = 6.022 \times 10^{23}.$$</p>
</div>
</div>
<div class="text-center text-muted mt-5">
© 2025 Advanced Nuclear Physics. All Rights Reserved.
</div>
<p><b>1. Rješenje jednadžbe</b> \( \frac{1}{3}x + \frac{1}{2}x = 5 \).</p>
<p><b>2. Broj suprotan rješenju jednadžbe</b> \( 3x - 4 - 2(x - 1) = -14 \).</p>
<p><b>4. Rješenje jednadžbe</b> \( 2(3 + x) = 3(x - 6) \).</p>
<p><b>5. Rješenje jednadžbe</b> \( \frac{a + 2}{6} - \frac{a - 4}{3} = -5 \).</p>
<p><b>6. Sedmerokratnik rješenja jednadžbe</b> \( \frac{1}{5}x - \frac{x}{3} = -2 \).</p>
<hr>
<p><b>1.</b> \( -100 \cdot (-6) - 8 \cdot (-5) \)</p>
<p><b>2. Broj tri puta manji od rješenja jednadžbe</b> \( 2x - 1 = 83 \).</p>
<p><b>3. Rješenje jednadžbe</b> \( \frac{2}{5}x - \frac{3}{4}x = -7 \).</p>
<p><b>4. Neposredni sljedbenik rješenja jednadžbe</b> \( 2(2x - 3) - 3(x + 1) = 11 \).</p>