šadovodndvol
Linearne jednadžbe s jednom nepoznanicom
§§N1§§ izračunaj:
$$ {( §§V1(-2,10,1)§§ +x) \over (2x + 1)} - { §§V3(4,20,2)§§ x \over (4x + 1)} (x - §§V0(1,4,1)§§ ) = §§V2(1,40,3)§§ - a/c=1000 \( a + b = c \) \( \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x). \) \[ a + b = c \] a/c=1000 $ \( a + b = c \) \( \frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x). \) $$
https://www.geissmanns.com/GORENJE-Kuehl-Gefrierkombination-NRC6194SXL4-185-cm-hoch-60-cm-breit/UVONY5WA2PQK
Deri
$$\int_1^ §§V0(1,11,1)§§ (x + §§V1(0,24,3)§§ )^ §§V2(1,4,1)§§ dx + §§V0(3,66,3)§§ x = 0 $$
alfatraining-40
https://microsoftlearning.github.io/AZ-104-MicrosoftAzureAdministrator/
https://atomisystems.com/ - simulacija kao deploy
https://learn.microsoft.com/en-us/microsoft-365/enterprise/subscriptions-licenses-accounts-and-tenants-for-microsoft-cloud-offerings?view=o365-worldwide#elements-of-the-hierarchy
282 pitanje
$$ {( §§V3(2,16,4)§§ x + 2) \over ( §§V0(1,5,1)§§ x + 1)} = §§V1(2,10,1) §§ X + §§V2(1,5,1) §§ $$
aaa
$$ §§V0(1,11,1)§§X = \frac{§§V3(1,11,1)§§}{2}, \left(-\frac{§§V2(1,11,1)§§}{2}\right)^n
§§V0(1,11,1)§§ $$
https://jayanttripathy.com/building-crud-rest-apis-in-asp-net-core-7-0-with-ef/
16,33,84,91,95,126,175,177,179,210,239,305,306,341,350,354,370,417,472,491,511,515,533,535,562
....
11, 568, 415, 315, 447, 556, 513, 69,288, 135, 592, 539, 532, 432, 498, 192, 39, 324
Labs
275,276,277,278,279,280,281,282
Mehrfachfragen
2,16,25,39,40,83,85,93,133,144,175,190,223,247,270,295,300,322,333,343,379,395,396,479,499,513
Reihenfolge
46,50,65,82,161,169,208,211,212,214,219,222,237,286,288,320,323,327,328,342,388,396,471,486,487,493,516
Sequenzen
214, 237, 388, 396, 161, 169, 46, 211, 219, 222, 320, 323, 328, 65, 212, 342, 471, 493, 50, 208
Cert2brain
$$ Y= \frac{§§V0(0,5,1)§§}{2}, \left(-\frac{1}{§§V0(0,5,1)§§}\right)^n $$
Sudio je §§N0§§ a pomoćnici su §§N1§§ i §§N2§§ .
Konačan rezultat Hajduk:Dinamo je §§V0(0,5,1)§§ : §§V1(0,5,1)§§
$$ a^2, x^y, 2^{n-1} $$
11,15,16,33,39,49,69,84,91,95,122,126,126,135,175,177,179,186,192,195,210,239,288,303,305,306,307,315,324,339,341,350,354,367,370,399,415,417,419,432,447,472,472,491,498,511,513,515,520,532,533,535,539,556,562,568,579,592,605
Certbrain zadatak za §§N0§§
11,15,16,33,39,49,69,84,91,95,122,126,126,135,175,177,179,186,192,195,210,239,288,303,305,306,307,315,324,339,341,350,354,367,370,399,415,417,419,432,447,472,472,491,498,511,513,515,520,532,533,535,539,556,562,568,579,592,605,
Ubungen
$$ { §§V4(3,15,3)§§ \over §§V1(1,5,1)§§ x } + { §§V2(1,10,1)§§ \over §§V3(1,5,1)§§ x} - { §§V0(1,10,1)§§ \over §§V6(5,25,5)§§ x} = §§V7(2,16,2) §§ $$
@page "/"
$$ a/c=1000 $$
\( a + b = c \)
\[
\frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x).
\]
\[
\frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x).
\]
Bestimme rechnerisch die Schnittpunkte von g1 mit der x- und y-Achse.
<div @ifyoucanseethistextthenthecodewasnotexecutedhere=""></div>
$$ g1 = - { 1 \over §§V1(3,12,3)§§ X } = Y - §§V7(3,9,1) §§ \\ $$
Koliko je udaljena točka X ( §§V0(1,50,1)§§ , §§V1(12,50,2)§§ ) od točke Y ( §§V2(55,100,5)§§ , §§V3(-100,25,2)§§ ) gospodine §§N0§§ ?