Taurig Pferd
Numbers up to 10
<details>
<summary>Erklärung der Formeln:</summary>
<table class=' table table-bordered table-striped '><tr><td>Oberfläche der Kugel: </td><td>Volumen der Kugel:</td></tr><tr>
<td>\(P = 4 \pi r^2\)</td><td>\(V = \frac{4}{3} \pi r^3\)</td></tr></table>
</details>
<p>(a) Wenn der Radius der Kugel §§V0(1,5,1)§§ beträgt, berechne die Oberfläche der Kugel mit der Formel 4πr².</p>
<p>(b) Wenn die Oberfläche der Kugel §§V1(50,200,10)§§ beträgt, berechne den Radius der Kugel.</p>
<p>(c) Wie groß ist das Volumen der Kugel mit dem Radius §§V2(3,10,1)§§? Verwende die Formel 4/3πr³.</p>
<p>(d) Wenn das Volumen der Kugel §§V3(50,500,50)§§ beträgt, berechne ihren Radius.</p>
<p>(e) Wie groß ist die Oberfläche der Kugel mit dem Radius §§V4(7,15,1)§§? Verwende die Formel 4πr².</p>
<p>(f) Wenn das Volumen der Kugel §§V5(100,1000,100)§§ beträgt, berechne ihren Inhalt mit der Formel 4/3πr³.</p>
<p>(g) Wenn der Radius der Kugel §§V6(10,20,1)§§ beträgt, berechne die Oberfläche der Kugel.</p>
<p>(h) Wenn die Oberfläche der Kugel §§V7(100,1000,100)§§ beträgt, wie groß ist ihr Radius?</p>
<p>(i) In der Bäckerei wurden §§V1(50,100,20)§§ Brote gebacken. Davon wurden §§V2(30,60,10)§§ verkauft. Wie viele Brote sind in der Bäckerei übrig?</p>
<p>(j) Wie groß ist die Oberfläche der Kugel, wenn ihr Volumen §§V9(500,4000,500)§§ beträgt?</p>
$$
\begin{flalign*}
& \textbf{Tasks - Gradište Elementary School - Lower Grades} && \\
&(a) \quad \text{Calculate:} \\
& \quad \frac{ §§V1(10,50,10)§§ }{4} \cdot \left(\frac{ §§V2(1,10,1)§§ }{6} + \frac{7}{ §§V3(1,10,1)§§ }\right) && \\
&(b) \quad \text{Solve the differential equation:} \\
& \quad y' + §§V3(1,10,1)§§ xy = x, \text{ for } y(0) = §§V2(1,5,1)§§ && \\
&(c) \quad \text{Calculate the integral:} \\
& \quad \int_{0}^{\pi} \sin(x) \cos(x) \,dx && \\
&(d) \quad \text{Find the inverse matrix:} \\
& \quad \text{Let } A = \begin{bmatrix} §§V3(1,10,1)§§ & §§V6(-10,0,1)§§ \\ 3 & §§V3(1,10,1)§§ \end{bmatrix}. \text{ Determine } A^{-1}. && \\
&(e) \quad \text{Solve the system of differential equations:} \\
& \quad \begin{cases}
x' = -2x + §§V3(1,10,1)§§ y \\
y' = §§V3(1,10,1)§§ x - y
\end{cases} && \\
&(f) \quad \text{Calculate the limit:} \\
& \quad \lim_{{x \to 0}} \frac{e^x - §§V6(1,10,1)§§ }{x} && \\
&(g) \quad \text{Expand the function in a Taylor series:} \\
& \quad f(x) = \ln(x+1), \text{ around } x = 0. && \\
&(h) \quad \text{Calculate the triple integral:} \\
& \quad \iiint_{V} (x^2 + y^2 + z^2) \,dx\,dy\,dz, \text{ where } V \text{ is the sphere } x^2 + y^2 + z^2 \leq 1. && \\
&(i) \quad \text{Solve the Laplace equation:} \\
& \quad \nabla^2 u = 0, \text{ in cylindrical coordinates,} \\
& \quad \text{with the condition } u(0, \theta, z) = \sin(2\theta). && \\
&(j) \quad \text{Calculate:} \\
& \quad \sum_{k=1}^{n} k^3, \text{ for } n \in \mathbb{N}. && \\
&(k) \quad \text{Find the singular values of the matrix:} \\
& \quad \text{Let } B = \begin{bmatrix} 1 & §§V3(1,10,1)§§ & 3 \\ 0 & §§V3(1,10,1)§§ & 4 \end{bmatrix}. \text{ Determine the singular values.} && \\
&(l) \quad \text{Solve the complex equation:} \\
& \quad z^4 - §§V5(1,10,1)§§ z^2 + §§V4(1,10,1)§§ = 0. && \\
&(m) \quad \text{Calculate the Fourier transformation:} \\
& \quad F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \,dt, \text{ for } f(t) = e^{-|t|}. && \\
&(n) \quad \text{Find local maxima and minima of the function:} \\
& \quad f(x) = x^3 - §§V3(1,10,1)§§ x^2 + §§V3(10,100,1)§§ x + 2. && \\
&(o) \quad \text{Solve the vector equation:} \\
& \quad \mathbf{A} \cdot \mathbf{x} = \mathbf{b}, \text{ for } \mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}. && \\
&(p) \quad \text{Calculate:} \\
& \quad \frac{d}{dx} \left( §§V3(1,10,1)§§ x^2 + 2\sqrt{x} \right), \text{ for } x > 0. && \\
&(q) \quad \text{Solve the system of nonlinear equations:} \\
& \quad \begin{cases}
x^2 + y^2 = 10 \\
e^x + y = 8
\end{cases} && \\
&(r) \quad \text{Calculate the Riemann sum:} \\
& \quad \sum_{i=1}^{n} \frac{1}{n} \sin\left( \frac{i}{n} \pi \right), \text{ for } n \in \mathbb{N}. && \\
&(s) \quad \text{Find the extremum of the function:} \\
& \quad f(x,y) = x^2 + §§V3(1,10,3)§§ xy - §§V3(1,10,1)§§ y^2, \text{ on } D = \{(x,y) \mid x^2 + y^2 \leq 4\}. && \\
\end{flalign*}
$$