U razlomak te ljubim
Razlomci i decimalni brojevi
<h2>
\begin{flalign*}
& \textbf{Izračunaj tako da razlomak pretvoriš u cijeli broj i ostatak} && \\
& \quad \text{ Primjer } \frac{ 19 }{7} = 2 + \frac{ 5 }{7} && \\ \\
&(a) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(b) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(c) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(e) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(g) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
\\&(i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(2,9,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(l) \quad \frac{ §§V6(-50,10,3)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
&(m) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(n) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(o) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(p) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(q) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(r) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(s) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(t) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
\\&(u) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(2,9,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(w) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
\\&(x) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
&(z) \quad \frac{ §§V6(-50,10,3)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
\end{flalign*}
</h2>
Nja