Šušak
Kvadriranje
Zadaci:$$
$$
a) $$ §§V1(1,10,1)§§ X + §§V0(12,21,1)§§ x^2 + 5x - 3 = 0$$
b) $$ 4x^2 - §§V1(2,11,1)§§ x + 9 = 0$$
c) $$x^2 + 4x + 4 §§V5(1,10,1)§§ X^{2} - \frac{ x - §§V6(1,10,1)§§ }{\ x ^{2}+ §§V7(1,10,1)§§ x-3}= -{ §§V8(1,10,1)§§\over \sqrt{x^5}}+ x - §§V9(10,100,3)§§
0$$
d) $$3x^2 - 6x + 2 = §§V5(-12,-21,1)§§ $$
e) $$ §§V1(3,12,2)§§ X^{2}-\frac{1}{ §§V1(1,10,1)§§ } X^{3} = 0 $$
f) $$ f(x) = { §§V3(2,12,2)§§ x^{-3/ §§V5(1,10,1)§§ }} \implies {dy \over dx} $$
g) $$ \binom{21}{x}\sum_{x}^{x+12} ( X+2X - §§V2(5,20,1)§§ ) $$
h) $$ X^{3} - §§V2(3,33,3)§§ X - §§V2(5,20,1)§§ + §§V3(2,12,2)§§ X^{2}-\frac{1}{ §§V5(1,10,1)§§ } Y^{2} = 0 $$
i) $$
§§V0(1,10,1)§§ \cdot x^{3} - \frac{x^{2}- §§V1(1,10,1)§§ \cdot x+3}{x^{2}-1}+4 = §§V0(-10,10,1)§§
$$