Primjeri formula


(a) Rješenje sustava jednadžbi:<br> \(x = §§V0(1,8,1)§§\)<br> \(y = §§V1(1,8,1)§§\)<br> \(z = §§V2(1,8,1)§§\)<br><br> (b) Izvod funkcije:<br> \(f'(x) = 2\cos(2x) + e^x\)<br><br> (c) Rješenje diferencijalne jednadžbe:<br> \(y(x) = x^3 + x^2 - x + 2\)<br><br> (d) Određeni integral:<br> \(\int_0^1 x^2 \cos(x) \,dx = \frac{1}{3}(\sin(1) + \frac{2}{3})\)<br><br> (e) Razlaganje na parcijalne razlomke:<br> \(f(x) = \frac{1}{3} \cdot \frac{1}{x-§§V3(1,8,1)§§} - \frac{1}{2} \cdot \frac{1}{x+§§V4(1,8,1)§§}\)<br><br> (f) Laplaceova transformacija:<br> \(F(s) = \frac{12}{(s-§§V5(1,8,1)§§)^2 + 16}\)<br><br> (g) Determinanta matrice:<br> \(-10\)<br><br> (h) Invertibilnost:<br> \(f(x) = x^3\) je invertibilna na \(\mathbb{R}\)<br><br> (i) Integralna jednadžba:<br> \(y(x) = e^{x^2}\)<br><br> (j) Kompleksni broj:<br> \(\frac{(1+2i)(3-4i)}{2-3i} = §§V6(1,8,1)§§ + §§V7(1,8,1)§§i\)<br><br> <hr> <strong>Drugi dio</strong><br><br> (a) Diferencijalna jednadžba:<br> \(y(x) = e^{-§§V8(1,8,1)§§x} \cdot (x^2 + 2x + 3)\)<br><br> (b) Kompleksni korijeni:<br> \(z_1 = \pm i, z_2 = \pm i\sqrt{3}\)<br><br> (c) Sustav diferencijalnih jednadžbi:<br> \(x(t) = e^{-§§V9(1,8,1)§§t} \cdot \cos(2t)\)<br> \(y(t) = e^{-§§V10(1,8,1)§§t} \cdot \sin(2t)\)<br><br> (d) Fourierova transformacija:<br> \(F(\omega) = \sqrt{\pi}/4 \cdot (\delta(\omega - 1) + \delta(\omega + 1) - \frac{1}{2}\delta(\omega))\)<br><br> (e) Gradijent:<br> \(\nabla f(1, -1, 2) = (§§V11(1,8,1)§§, §§V12(1,8,1)§§, §§V13(1,8,1)§§)\)<br><br> (f) Linearna regresija:<br> \(y = 2x + 1\)<br><br> (g) Inverzna Laplaceova transformacija:<br> \(f(t) = e^{-§§V14(1,8,1)§§t} \cdot (3t + 2)\)<br><br> (h) Vektori:<br> Tangenta i normala u \(t = \pi/4\) \begin{flalign*} & \textbf{Berechnen Sie, indem Sie den Bruch in eine ganze Zahl und einen Rest umwandeln} && \\ & \quad \text{Beispiel } \frac{19}{7} = 2 + \frac{5}{7} && \\ &(a) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (b) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (c) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \ && \\ &(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (e) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ &(g) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ &(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad (l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ & \textbf{} && \\ & \textbf{Part 2} && \\ & \quad \text{ - negative zahlen} && \\ &(a) \quad \frac{ §§V1(-6,-49,-1)§§ }{ §§V6(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (b) \quad \frac{ §§V6(-50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (c) \quad \frac{ §§V2(-60,6,1)§§ }{ §§V7(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (e) \quad \frac{ §§V5(-30,-50,-1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ \\&(g) \quad \frac{ §§V1(-10,-50,-1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\ & \textbf{} && \\ & \textbf{Part 3} && \\ & \quad \text{ - Ein Geschenk meines Vaters :-) } && \\ &(a) \quad \frac{ §§V1(-6,-49,-1)§§ }{ §§V6(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (b) \quad \frac{ §§V6(-50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (c) \quad \frac{ §§V2(-60,6,1)§§ }{ §§V7(-5,-9,-1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (e) \quad \frac{ §§V5(-30,-50,-1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ \\&(g) \quad \frac{ §§V1(-10,-50,-1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(1,7,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (l) \quad \frac{ §§V6(-50,50,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\ \end{flalign*}
An unhandled error has occurred. Reload 🗙