Kvadrati umnožak
Kvadriranje
<b> Rješi zadatke</b>
<p>a) \( (§§V0(3,15,.001251)§§ \cdot §§V0(5,15,1)§§)^2 = ? \) </p>
<p>b) \( (§§V4(8,32,8)§§ \cdot 3)^2 = ? \) </p>
<p>c) \( \left(\frac{§§V2(10,50,5)§§}{5}\right)^2 + \{ (§§V4(4,10,1)§§)^{2} \}^{-2} = ? \) </p>
a) Solve $((§§V0(3,15,1)§§ \cdot §§V0(5,15,1)§§)^2)$:
\[
((§§V0(3,15,1)§§ \cdot §§V0(5,15,1)§§)^2)
\]
b) Solve $((§§V1(1,10,1)§§ \cdot §§V1(2,20,1)§§)^2)$:
\[
((§§V1(1,10,1)§§ \cdot §§V1(2,20,1)§§)^2)
\]
c) Solve $(§§V2(1,10,1)§§ + §§V2(5,15,1)§§ \cdot §§V2(2,8,1)§§)$:
\[
(§§V2(1,10,1)§§ + §§V2(5,15,1)§§ \cdot §§V2(2,8,1)§§)
\]
d) Solve $((§§V3(3,10,1)§§ \cdot §§V3(2,6,1)§§)^2)$:
\[
((§§V3(3,10,1)§§ \cdot §§V3(2,6,1)§§)^2)
\]
e) Solve $(§§V4(1,10,1)§§ + §§V4(2,10,1)§§ \cdot §§V4(3,8,1)§§)$:
\[
(§§V4(1,10,1)§§ + §§V4(2,10,1)§§ \cdot §§V4(3,8,1)§§)
\]
f) Solve $(§§V5(1,10,1)§§ \cdot §§V5(2,10,1)§§ - §§V5(2,8,1)§§)$:
\[
(§§V5(1,10,1)§§ \cdot §§V5(2,10,1)§§ - §§V5(2,8,1)§§)
\]
g) Solve $((§§V6(1,10,1)§§ \cdot §§V6(3,9,1)§§)^2)$:
\[
((§§V6(1,10,1)§§ \cdot §§V6(3,9,1)§§)^2)
\]
h) Solve $(§§V7(2,20,1)§§ + §§V7(3,15,1)§§ \cdot §§V7(2,8,1)§§)$:
\[
(§§V7(2,20,1)§§ + §§V7(3,15,1)§§ \cdot §§V7(2,8,1)§§)
\]
i) Solve $((§§V8(2,10,1)§§ \cdot §§V8(1,5,1)§§)^2)$:
\[
((§§V8(2,10,1)§§ \cdot §§V8(1,5,1)§§)^2)
\]
j) Solve $(§§V9(1,10,1)§§ + §§V9(5,15,1)§§ - §§V9(2,8,1)§§)$:
\[
(§§V9(1,10,1)§§ + §§V9(5,15,1)§§ - §§V9(2,8,1)§§)
\]