Dusburg
Quadrieren
Pitanja
\begin{flalign*}
& \textbf{Matematička Pitanja - Grupirane i Centrirane Jednadžbe} && \\
&(a) \quad \text{Složite izraz:} \\
& \quad \frac{ §§V1(3,10,1)§§ x^3 - §§V2(2,8,1)§§ x^2 + §§V3(1,5,1)§§ x }{x^2 - §§V4(1,4,1)§§ x + §§V5(2,6,1)§§ } \div \frac{ §§V6(2,8,1)§§ x^2 - §§V7(1,5,1)§§ x }{x^2 - §§V8(1,4,1)§§ x} && \\
&(b) \quad \text{Riješite jednadžbu za } x: \\
& \quad \sqrt{ §§V9(4,25,2)§§ x - §§V1(1,10,1)§§ } + §§V2(2,8,1)§§ = §§V3(5,15,1)§§ - \frac{ §§V4(2,10,1)§§ }{3}x && \\
&(c) \quad \text{Nađite vrijednost za } x \text{ koja zadovoljava jednadžbu:} \\
& \quad \frac{ §§V5(3,12,1)§§ }{ §§V6(2,8,1)§§ }x - \frac{ §§V7(5,15,1)§§ }{ §§V8(3,12,1)§§ } = \frac{ x - §§V9(2,8,1)§§ }{ §§V1(4,16,1)§§ } + \frac{ §§V2(1,4,1)§§ }{ §§V3(8,32,1)§§ } && \\
&(d) \quad \text{Izračunajte derivaciju sljedeće funkcije:} \\
& \quad f(x) = \frac{ e^{ §§V4(1,5,1)§§ x}}{x^2} + \ln( §§V5(2,8,1)§§ x) - \sqrt{ §§V6(1,9,2)§§ x + 1} && \\
&(e) \quad \text{Izračunajte određeni integral:} \\
& \quad \int_{ §§V7(1,4,1)§§ }^{ §§V8(6,12,1)§§ } (x^3 + 2x^2) \,dx + \int_{ §§V9(0,3,1)§§ }^{ §§V1(1,5,1)§§ } (2x + 1) \,dx && \\
&(f) \quad \text{Riješite sustav jednadžbi:} \\
& \quad \begin{cases}
3x + 2y - z = §§V2(5,15,1)§§ \\
x - 3y + 4z = - §§V3(2,8,1)§§ \\
2x + y - 2z = §§V4(7,21,1)§§
\end{cases} \\
&(g) \quad \text{Nađite rješenje diferencijalne jednadžbe:} \\
& \quad \frac{ dy }{dx} + 2y = 4x + 3e^{ §§V5(1,4,1)§§ x} && \\
&(h) \quad \text{Odredite vrijednost za } x \text{ koja zadovoljava jednadžbu:} \\
& \quad \tan( §§V6(1,5,1)§§ x) + \frac{1}{ §§V7(2,8,1)§§ }\sin( §§V8(1,4,1)§§ x) = 1 && \\
&(i) \quad \text{Izračunajte neodređeni integral funkcije:} \\
& \quad \int ( §§V9(4,16,1)§§ x^3 + 2\sqrt{x} + \frac{1}{x^2}) \,dx && \\
&(j) \quad \text{Izračunajte drugu derivaciju:} \\
& \quad g(x) = \frac{ §§V1(2,8,1)§§ x^3 \cos(x)}{\sqrt{ §§V2(1,9,2)§§ x + 1}} - \ln( §§V3(3,12,1)§§ x^2 + §§V4(1,5,1)§§ x) &&
\end{flalign*}